Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 576
Filtrar
1.
J Biomech Eng ; 146(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558115

RESUMO

A previously developed model of a lymphatic vessel as a chain of lymphangions was investigated to determine whether lymphangions of unequal length reduce pumping relative to a similar chain of equal-length ones. The model incorporates passive elastic and active contractile properties taken from ex vivo measurements, and intravascular lymphatic valves as transvalvular pressure-dependent resistances to flow with hysteresis and transmural pressure-dependent bias to the open state as observed experimentally. Coordination of lymphangion contractions is managed by marrying an autonomous transmural pressure-dependent pacemaker for each lymphangion with bidirectional transmission of activation signals between lymphangions, qualitatively matching empirical observations. With eight lymphangions as used here and many nonlinear constraints, the model is capable of complex outcomes. The expected flow-rate advantage conferred by longer lymphangions everywhere was confirmed. However, the anticipated advantage of uniform lymphangions over those of unequal length, compared in chains of equal overall length, was not found. A wide variety of dynamical outcomes was observed, with the most powerful determinant being the adverse pressure difference, rather than the arrangement of long and short lymphangions. This work suggests that the wide variation in lymphangion length which is commonly observed in collecting lymphatic vessels does not confer disadvantage in pumping lymph.


Assuntos
Vasos Linfáticos , Modelos Biológicos , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Linfa/fisiologia , Pressão , Contração Muscular
2.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587372

RESUMO

The lymphatic vasculature, now often referred to as "the third circulation," is located in many vital organ systems. A principal mechanical function of the lymphatic vasculature is to return fluid from extracellular spaces back to the central venous ducts. Lymph transport is mediated by spontaneous rhythmic contractions of lymph vessels (LVs). LV contractions are largely regulated by the cyclic rise and fall of cytosolic, free calcium ([Ca2+]i). This paper presents a method to concurrently calculate changes in absolute concentrations of [Ca2+]i and vessel contractility/rhythmicity in real time in isolated, pressurized LVs. Using isolated rat mesenteric LVs, we studied changes in [Ca2+]i and contractility/rhythmicity in response to drug addition. Isolated LVs were loaded with the ratiometric Ca2+-sensing indicator Fura-2AM, and video microscopy coupled with edge-detection software was used to capture [Ca2+]i and diameter measurements continuously in real time. The Fura-2AM signal from each LV was calibrated to the minimum and maximum signal for each vessel and used to calculate absolute [Ca2+]i. Diameter measurements were used to calculate contractile parameters (amplitude, end diastolic diameter, end systolic diameter, calculated flow) and rhythmicity (frequency, contraction time, relaxation time) and correlated with absolute [Ca2+]i measurements.


Assuntos
Cálcio , Vasos Linfáticos , Ratos , Animais , Vasos Linfáticos/fisiologia , Linfa , Contração Muscular/fisiologia
3.
Commun Biol ; 7(1): 229, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402351

RESUMO

Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, ß-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Vasos Linfáticos/fisiologia , Encéfalo/metabolismo , Sistema Linfático , Meninges
4.
Neuroreport ; 35(3): 160-169, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305109

RESUMO

To investigate the distribution and characteristics of lymphatic vessels within the central nervous system, we focus on the meninges of the spinal cord and brain parenchyma in mice. Additionally, we aim to provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels, while optimizing the perfusion parameters to improve histomorphological quality. Male C57BL/6J mice were randomly divided into four groups, with each group assigned a specific perfusion parameter based on perfusion volumes and temperatures. Immunofluorescence staining of lymphatics and blood vessels was performed on both meningeal and the brain tissue samples. Statistical analysis was performed using one-way analysis of variance to compare the groups, and a significant level of P < 0.05 was considered statistically significant. Our study reports the presence of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice. We highlight the crucial role of high perfusion volume of paraformaldehyde with low temperature in fixation for achieving optimal results. We provide experimental methods for obtaining optimal imaging and clear structures of lymphatic vessels in the meninges of the spinal cord and brain parenchyma in mice, which contribute to our understanding of the distribution and characteristics of lymphatic vessels within the central nervous system. Further research is warranted to explore the functional implications of these lymphatic vessels and their potential therapeutic significance in neurodegenerative and neuroinflammatory diseases.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Meninges/diagnóstico por imagem , Encéfalo , Perfusão
5.
Physiol Rep ; 12(3): e15950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355142

RESUMO

Lymphatic vessels are actively involved in the recovery process of inflamed tissues. However, the changes in intramuscular lymphatic vessels during inflammation caused by skeletal muscle injury remain unclear. Therefore, the purpose of this study was to clarify the changes in lymphatic vessels after skeletal muscle injury. The left tibialis anterior muscles of male mice were subjected to lengthening contractions (LC) for inducing skeletal muscle injury, and samples were collected on Days 2, 4, and 7 for examining changes in both the skeletal muscles and intramuscular lymphatic vessels. With hematoxylin-eosin staining, the inflammatory response was observed in myofibers on Days 2 and 4 after LC, whereas regeneration of myofibers was found on Day 7 after LC. The number and area of intramuscular lymphatic vessels analyzed by immunohistochemical staining with an antibody against lymphatic vessel endothelial hyaluronan receptor 1 were significantly increased only on Day 4 after LC. Based on the abovementioned results, intramuscular lymphatic vessels undergo morphological changes such as increase under the state of muscle inflammation. This study demonstrated that the morphology of intramuscular lymphatic vessels undergoes significant changes during the initial recovery phase following skeletal muscle injury.


Assuntos
Vasos Linfáticos , Músculo Esquelético , Camundongos , Masculino , Animais , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Vasos Linfáticos/fisiologia , Inflamação/patologia
6.
Signal Transduct Target Ther ; 9(1): 9, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172098

RESUMO

Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.


Assuntos
Vasos Linfáticos , Humanos , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiologia , Linfangiogênese/genética , Transdução de Sinais/genética
7.
Nature ; 625(7996): 768-777, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200313

RESUMO

Cerebrospinal fluid (CSF) in the subarachnoid space around the brain has long been known to drain through the lymphatics to cervical lymph nodes1-17, but the connections and regulation have been challenging to identify. Here, using fluorescent CSF tracers in Prox1-GFP lymphatic reporter mice18, we found that the nasopharyngeal lymphatic plexus is a major hub for CSF outflow to deep cervical lymph nodes. This plexus had unusual valves and short lymphangions but no smooth-muscle coverage, whereas downstream deep cervical lymphatics had typical semilunar valves, long lymphangions and smooth muscle coverage that transported CSF to the deep cervical lymph nodes. α-Adrenergic and nitric oxide signalling in the smooth muscle cells regulated CSF drainage through the transport properties of deep cervical lymphatics. During ageing, the nasopharyngeal lymphatic plexus atrophied, but deep cervical lymphatics were not similarly altered, and CSF outflow could still be increased by adrenergic or nitric oxide signalling. Single-cell analysis of gene expression in lymphatic endothelial cells of the nasopharyngeal plexus of aged mice revealed increased type I interferon signalling and other inflammatory cytokines. The importance of evidence for the nasopharyngeal lymphatic plexus functioning as a CSF outflow hub is highlighted by its regression during ageing. Yet, the ageing-resistant pharmacological activation of deep cervical lymphatic transport towards lymph nodes can still increase CSF outflow, offering an approach for augmenting CSF clearance in age-related neurological conditions in which greater efflux would be beneficial.


Assuntos
Líquido Cefalorraquidiano , Vértebras Cervicais , Drenagem , Vasos Linfáticos , Animais , Camundongos , Envelhecimento/metabolismo , Líquido Cefalorraquidiano/metabolismo , Vértebras Cervicais/metabolismo , Células Endoteliais/metabolismo , Fluorescência , Genes Reporter , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Vasos Linfáticos/fisiologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Nariz/fisiologia , Faringe/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Análise de Célula Única , Transdução de Sinais
8.
Biomech Model Mechanobiol ; 23(1): 3-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902894

RESUMO

Historically, research into the lymphatic system has been overlooked due to both a lack of knowledge and limited recognition of its importance. In the last decade however, lymphatic research has gained substantial momentum and has included the development of a variety of computational models to aid understanding of this complex system. This article reviews existing computational fluid dynamic models of the lymphatics covering each structural component including the initial lymphatics, pre-collecting and collecting vessels, and lymph nodes. This is followed by a summary of limitations and gaps in existing computational models and reasons that development in this field has been hindered to date. Over the next decade, efforts to further characterize lymphatic anatomy and physiology are anticipated to provide key data to further inform and validate lymphatic fluid dynamic models. Development of more comprehensive multiscale- and multi-physics computational models has the potential to significantly enhance the understanding of lymphatic function in both health and disease.


Assuntos
Hidrodinâmica , Vasos Linfáticos , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Simulação por Computador , Física
9.
Sci Rep ; 13(1): 21241, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040740

RESUMO

Lymphedema is a condition in which lymph transport is compromised. The factors that govern the timing of lymphatic contractions are largely unknown; however, these factors likely play a central role in lymphatic health. Computational models have proven useful in quantifying changes in lymph transport; nevertheless, there is still much unknown regarding the regulation of contractions. The purpose of this paper is to utilize computational modeling to examine the role of pacemaking activity in lymph transport. A 1D fluid-solid modeling framework was utilized to describe the interaction between the contracting vessel and the lymph flow. The distribution of contractions along a three-lymphangion chain in time and space was determined by specifying the pacemaking sites and parameters obtained from experimentation. The model effectively replicates the contractility patterns in experiments. Quantitatively, the flow rates were measured at 5.44 and 2.29 [Formula: see text], and the EF values were 78% and less than 33% in the WT and KO models, respectively, which are consistent with the literature. Applying pacemaking parameters in this modeling framework effectively captures lymphatic contractile wave propagations and their relation to lymph transport. It can serve as a motivation for conducting novel studies to evaluate lymphatic pumping function during the development of lymphedema.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Linfa/fisiologia , Vasos Linfáticos/fisiologia , Contração Muscular/fisiologia , Simulação por Computador , Sistema Linfático/fisiologia
10.
Methodist Debakey Cardiovasc J ; 19(5): 37-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028969

RESUMO

This article highlights the importance of the structure and function of cardiac lymphatics in cardiovascular diseases and the therapeutic potential of cardiac lymphangiogenesis. Specifically, we explore the innate lymphangiogenic response to damaged cardiac tissue or cardiac injury, derive key findings from regenerative models demonstrating how robust lymphangiogenic responses can be supported to improve cardiac function, and introduce an approach to imaging the structure and function of cardiac lymphatics.


Assuntos
Doenças Cardiovasculares , Vasos Linfáticos , Humanos , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Coração , Regeneração
11.
Cell Mol Life Sci ; 80(12): 366, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985518

RESUMO

The lymphatic vasculature plays a crucial role in fluid clearance and immune responses in peripheral organs by connecting them to distal lymph nodes. Recently, attention has been drawn to the lymphatic vessel network surrounding the brain's border tissue (Aspelund et al. in J Exp Med 212:991-999, 2015. https://doi.org/10.1084/jem.20142290 ; Louveau et al. in Nat Neurosci 21:1380-1391, 2018. https://doi.org/10.1038/s41593-018-0227-9 ), which guides immune cells in mediating protection against tumors (Song et al. in Nature 577:689-694, 2020. https://doi.org/10.1038/s41586-019-1912-x ) and pathogens Li et al. (Nat Neurosci 25:577-587, 2022. https://doi.org/10.1038/s41593-022-01063-z ) while also contributing to autoimmunity (Louveau et al. 2018) and neurodegeneration (Da Mesquita et al. in Nature 560:185-191, 2018. https://doi.org/10.1038/s41586-018-0368-8 ). New studies have highlighted the integral involvement of meningeal lymphatic vessels in neuropathology. However, our limited understanding of spinal cord meningeal lymphatics and immunity hinders efforts to protect and heal the spinal cord from infections, injury, and other immune-mediated diseases. This review aims to provide a comprehensive overview of the state of spinal cord meningeal immunity, highlighting its unique immunologically relevant anatomy, discussing immune cells and lymphatic vasculature, and exploring the potential impact of injuries and inflammatory disorders on this intricate environment.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Meninges , Sistema Linfático , Medula Espinal , Vasos Linfáticos/fisiologia
12.
J Gen Physiol ; 155(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851028

RESUMO

Lymphatic system defects are involved in a wide range of diseases, including obesity, cardiovascular disease, and neurological disorders, such as Alzheimer's disease. Fluid return through the lymphatic vascular system is primarily provided by contractions of muscle cells in the walls of lymphatic vessels, which are in turn driven by electrochemical oscillations that cause rhythmic action potentials and associated surges in intracellular calcium ion concentration. There is an incomplete understanding of the mechanisms involved in these repeated events, restricting the development of pharmacological treatments for dysfunction. Previously, we proposed a model where autonomous oscillations in the membrane potential (M-clock) drove passive oscillations in the calcium concentration (C-clock). In this paper, to model more accurately what is known about the underlying physiology, we extend this model to the case where the M-clock and the C-clock oscillators are both active but coupled together, thus both driving the action potentials. This extension results from modifications to the model's description of the IP3 receptor, a key C-clock mechanism. The synchronised dual-driving clock behaviour enables the model to match IP3 receptor knock-out data, thus resolving an issue with previous models. We also use phase-plane analysis to explain the mechanisms of coupling of the dual clocks. The model has the potential to help determine mechanisms and find targets for pharmacological treatment of some causes of lymphoedema.


Assuntos
Relógios Biológicos , Vasos Linfáticos , Relógios Biológicos/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Cálcio/metabolismo , Células Musculares/metabolismo , Vasos Linfáticos/fisiologia
13.
Physiol Rep ; 11(11): e15697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37269161

RESUMO

Physiological properties and function of the lymphatic system is still somewhat of a mystery. We report the current knowledge about human lymphatic vessel contractility and capability of adaptation. A literature search in PubMed identified studies published January 2000-September 2022. Inclusion criteria were studies investigating parameters related to contraction frequency, fluid velocity, and lymphatic pressure in vivo and ex vivo in human lymphatic vessels. The search returned 2885 papers of which 28 met the inclusion criteria. In vivo vessels revealed baseline contraction frequencies between 0.2 ± 0.2 and 1.8 ± 0.1 min1 , velocities between 0.008 ± 0.002 and 2.3 ± 0.3 cm/s, and pressures between 4.5 (range 0.5-9.2) and 60.3 ± 2.8 mm Hg. Gravitational forces, hyperthermia, and treatment with nifedipine caused increases in contraction frequency. Ex vivo lymphatic vessels displayed contraction frequencies between 1.2 ± 0.1 and 5.5 ± 1.2 min-1 . Exposure to agents affecting cation and anion channels, adrenoceptors, HCN channels, and changes in diameter-tension properties all resulted in changes in functional parameters as known from the blood vascular system. We find that the lymphatic system is dynamic and adaptable. Different investigative methods yields alternating results. Systematic approaches, consensus on investigative methods, and larger studies are needed to fully understand lymphatic transport and apply this in a clinical context.


Assuntos
Sistema Linfático , Vasos Linfáticos , Humanos , Vasos Linfáticos/fisiologia , Adaptação Fisiológica , Aclimatação
15.
Adv Biol (Weinh) ; 7(5): e2200158, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792967

RESUMO

Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.


Assuntos
Vasos Linfáticos , Neoplasias , Animais , Linfangiogênese/fisiologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiologia , Sistema Linfático/patologia , Sistema Linfático/fisiologia , Fibrose , Biologia
16.
Immunology ; 168(2): 233-247, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35719015

RESUMO

The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.


Assuntos
Glioma , Vasos Linfáticos , Humanos , Sistema Linfático/patologia , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Encéfalo , Meninges , Glioma/terapia , Glioma/patologia
17.
Curr Stem Cell Res Ther ; 18(6): 730-732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35674310

RESUMO

Lymphatic vasculature plays essential role in interstitial tissue uptake, immune cell transport and dietary lipid absorption. Increasing evidence has demonstrated the contribution of lymphangiogenesis to tissue repair and regeneration, which is associated with multiple factors such as improved tissue homeostasis, inflammation resolution, and immunomodulation effects. Meanwhile, lymphangiogenesis has the potential to regulate cell growth and proliferation through paracrine effects. Lymphatic vessels can also be important components of the stem cell niche and participate in regulating stem cell quiescency or activity. In perspective, the functions and mechanisms of lymphatic vessels in tissue repair and regeneration deserve further investigation. Novel strategies to stimulate lymphangiogenesis by using pharmacological, genetic, and lymphatic tissue engineering will be prospective to promote tissue repair and regeneration.


Assuntos
Vasos Linfáticos , Humanos , Estudos Prospectivos , Vasos Linfáticos/fisiologia , Linfangiogênese/fisiologia
18.
Adv Biol (Weinh) ; 7(5): e2200041, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35751460

RESUMO

Blood and lymphatic vessels are regulators of physiological processes, including oxygenation and fluid transport. Both vessels are ubiquitous throughout the body and are critical for sustaining tissue homeostasis. The complexity of each vessel's processes has limited the understanding of exactly how the vessels maintain their functions. Both vessels have been shown to be involved in the pathogenesis of many diseases, including cancer metastasis, and it is crucial to probe further specific mechanisms involved. In vitro models are developed to better understand blood and lymphatic physiological functions and their mechanisms. In this review, blood and lymphatic in vitro model systems, including 2D and 3D designs made using Transwells, microfluidic devices, organoid cultures, and various other methods, are described. Models studying endothelial cell-extracellular matrix interactions, endothelial barrier properties, transendothelial transport and cell migration, lymph/angiogenesis, vascular inflammation, and endothelial-cancer cell interactions are particularly focused. While the field has made significant progress in modeling and understanding lymphatic and blood vasculature, more models that include coculture of multiple cell types, complex extracellular matrix, and 3D morphologies, particularly for models mimicking disease states, will help further the understanding of the role of blood and lymphatic vasculature in health and disease.


Assuntos
Vasos Linfáticos , Vasos Linfáticos/fisiologia , Tecido Linfoide , Movimento Celular , Comunicação Celular
19.
Microcirculation ; 30(2-3): e12793, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36415150

RESUMO

The lymphatic vascular system is crucial for optimizing body fluid level, regulating immune function, and transporting lipid. Relative to the experimental models to investigate blood vasculature, there are significantly fewer tools to explore lymphatics. Although in vivo studies have contributed to major discoveries in the field, finding and characterizing lymphatic specific markers has opened the door to isolating lymphatic vessels and cells for building ex vivo and in vitro platforms. These preparations have enabled the study and analysis of lymphatic vasculature in various physiological and pathophysiological conditions leading to a better understanding of cellular expressions and signaling. In this review, a broad range of ex vivo and in vitro engineered models are highlighted and categorized based on the major lymphatic function they model including contractile function, inflammation, drainage and immune regulation, lymphangiogenesis, and tumor-lymphatic interactions. Then, the novel 3D engineered tissues are introduced consisting of acellularized scaffolds and hydrogels to form vessels and cellular structures close to in vivo morphology. This paper also compares traditional in vitro methods with recent technologies and elaborates on the inherent advantages and limitations of each preparation by critically discussing simplest to most complex tissue-cellular structures. It concludes with an outlook of the lymphatic vasculature models and the possible future direction of contemporary tools, such as organ-on-chips.


Assuntos
Vasos Linfáticos , Neoplasias , Humanos , Vasos Linfáticos/fisiologia , Sistema Linfático , Linfangiogênese , Transdução de Sinais
20.
Cardiovasc Eng Technol ; 14(2): 204-216, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36403192

RESUMO

PURPOSE: The lymphatic system is an essential but often understudied component of the circulatory system in comparison with its cardiovascular counterpart. Such disparity could often be explained by the difficulty in imaging lymphatics and the specialized microsurgical skills that are often required for lymphatic injury models. Recently, it has been shown that verteporfin, a photosensitive drug used for photodynamic therapy (PDT) to ablate the blood vessels, provides a similar effect on lymphatic vessels. Here, we seek to administer verteporfin and perform a modified form of PDT on collecting lymphatics in the mouse tail, a commonly used location for the study of lymphatic disorders, and examine lymphatic remodeling, contractility, and transport in response to the procedure. METHODS: Mice collecting lymphatics in the tail were injured by PDT through an intradermal injection of verteporfin in the distal tip of the tail followed by light activation on the proximal portion of the tail downstream of the injection site. Lymphatic function was evaluated using a near-infrared (NIR) imaging system weekly for up to 28 days after injury. RESULTS: PDT resulted in a loss in lymphatic function contractile frequency that persisted for up to 7 days after injury. Packet transport and packet amplitude, measurements reflective of the strength of contraction, were significantly reduced 14 days after injury. The lymphatics showed a delayed increase in lymphatic leakage at 7 days that persisted until the study endpoint on day 28. CONCLUSION: This technique provides an easy-to-use method for injuring lymphatics to understand their remodeling response to injury by PDT as well as potentially for screening therapeutics that seek to normalize lymphatic permeability or contractile function after injury.


Assuntos
Vasos Linfáticos , Fotoquimioterapia , Camundongos , Animais , Verteporfina/farmacologia , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...